ATP-independent diffusion of double-stranded RNA binding proteins
نویسندگان
چکیده
منابع مشابه
ATP-independent diffusion of double-stranded RNA binding proteins.
The proteins harboring double-stranded RNA binding domains (dsRBDs) play diverse functional roles such as RNA localization, splicing, editing, export, and translation, yet mechanistic basis and functional significance of dsRBDs remain unclear. To unravel this enigma, we investigated transactivation response RNA binding protein (TRBP) consisting of three dsRBDs, which functions in HIV replicatio...
متن کاملSubstrate Recognition and Specificity of Double-Stranded RNA Binding Proteins
Recognition of double-stranded (ds) RNA is an important part of many cellular pathways, including RNA silencing, viral recognition, RNA editing, processing, and transport. dsRNA recognition is often achieved by dsRNA binding domains (dsRBDs). We use atomistic molecular dynamics simulations to examine the binding interface of the transactivation response RNA binding protein (TRBP) dsRBDs to dsRN...
متن کاملDynamic profiling of double-stranded RNA binding proteins
Double-stranded (ds) RNA is a key player in numerous biological activities in cells, including RNA interference, anti-viral immunity and mRNA transport. The class of proteins responsible for recognizing dsRNA is termed double-stranded RNA binding proteins (dsRBP). However, little is known about the molecular mechanisms underlying the interaction between dsRBPs and dsRNA. Here we examined four h...
متن کاملRNA recognition by a Staufen double-stranded RNA-binding domain.
The double-stranded RNA-binding domain (dsRBD) is a common RNA-binding motif found in many proteins involved in RNA maturation and localization. To determine how this domain recognizes RNA, we have studied the third dsRBD from Drosophila Staufen. The domain binds optimally to RNA stem-loops containing 12 uninterrupted base pairs, and we have identified the amino acids required for this interact...
متن کاملMDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA.
Melanoma differentiation-associated gene-5 (MDA5) detects viral double-stranded RNA in the cytoplasm. RNA binding induces MDA5 to activate the signalling adaptor MAVS through interactions between the caspase recruitment domains (CARDs) of the two proteins. The molecular mechanism of MDA5 signalling is not well understood. Here, we show that MDA5 cooperatively binds short RNA ligands as a dimer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2012
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1212917110